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(b)
Elastically confined layer-by-layer assembly of DWCNTs: (a) atomic structure

representation; (b) top view of the nonlocal continuum-based structure.

Summary
Bilaterally free vibrations of vertically aligned jungles of DWCNTSs, confined in an elastic
matrix, are going to be explored using nonlocal elasticity theory of Eringen. Through

developing appropriate discrete and continuous models, the influential factors on vibrations

of the nanosystem are examined in details.
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Abstract

Based on appropriate nonlocal continuum models, free vibrations of a group of double-walled
carbon nanotubes (DWCNTSs) with forest configuration are going to be studied carefully.
The nanosystem has been embedded in an elastic material such that the exterior nan-
otubes interact with the adjacent environment. The constitutive tubes of the nanosystem
are modeled via nonlocal Rayleigh and high-order beams and all existing van der Waals
forces between the walls of different DWCNTSs are appropriately included in the developed
models. Using the Hamilton’s principle, the complex equations of motion of the nanosystem
are obtained by exploiting two continuous and discrete models with some effort. For two
conditions of the exterior tubes, the frequency analyses are carried out using assumed mode
method and Galerkin approach based on discrete and continuous models. A close compar-
ison of the results of the discrete models and those of the continuous ones demonstrates
the success of the newly developed continuous models. These models would be very useful
in the analysis of populous nanosystems. Finally, the crucial roles of the geometry of the
nanotubes, intertube distance, lateral stiffness of the nearby matrix, and the nonlocality on

the frequencies are investigated.
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Nonlocal continuum-based modeling; Discrete and continuous-based models; Elastic

matrix; Dynamic analysis.

Preprint submitted to European Journal of Mechanics-A/Solids October 15, 2019



1. Introduction

Among the numerous configurations of carbon nanotubes (CNTs), single- and multi-
walled, random and aligned, semiconducting and metallic, aligned CNTs are of particular
importance because fundamental physics investigations as well as several crucial applications
will not be conceivable in the lack of alignment. So far, enormous scientific works have been
reported on synthesizing, exploring, physics of their alignment, and exploitation of aligned
CNTs in numerous features; nevertheless, their various mechanical aspects have not been
scrutinized completely yet. A forest of vertically aligned double-walled carbon nanotube
(DWCNTSs) is an inimitable micro-scaled structure consisting of DWCNTSs oriented along
their major axes, which are perpendicular to the surface of the substrate. These special mi-
crostructures own a specific morphology that could be regulated accurately. This fact plus
to the extraordinary physical and mechanical properties of CNTs accelerate studies on their
potential applications as field-emission devices (Chen et al. 2008; Liu et al. 2009a; Sohn et
al. 2011), carbon fiber ropes (Jiang et al. 2002, 2011; Liu et al. 2009b), adhesive films (Qu
and Dai 2007; Qu et al. 2008), blackbody absorber (Yang et al. 2008), gas sensors (Drago-
man et al. 2007; Wei et al. 2006), dampers (Koratkar et al. 2002, 2003; Suhr et al. 2005),
transistors (Choi et al. 2004, 2001; hu et al. 2004), thermal interface materials (Lin et al.
2009; Ngo et al. 2004; Tong et al. 2007), nanocomposites (Cebeci et al. 2009; Ogasawara et
al. 2011; Yamamoto et al. 2009). Other crucial applications of vertically aligned CNTs have
been scrutinized and explained with more details by Lan et al. (2011) and Chen et al. (2016).
For most of these applications, mechanical behavior of jungles of vertically aligned CNTs
and their elasto-dynamic interactions with the surrounding medium should be appropriately
realized and explained.

For a densely synthesized DWCNTSs array, the van der Waals (vdW) forces are among
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the major intertube forces that should be taken into account in the mechanical analysis of
such a nanosystem. For each DWCNTSs, there exist rigorous vdW forces between the atoms
of the innermost tube and those of the outermost one. Such crucial forces are responsible
for the rigorous variation of the vdW forces due to the relative transverse motion of these
tubes. By assuming a linear relationship between these factors, the parameter of this pro-
portionality (which is commonly called the coefficient of vdW force) could be determined.
For transverse vibrations of DWCNTSs in a most general form, the existing vdW forces in
both lateral directions are commonly modeled by two springs with the same constants due
to the symmetry and coaxial of the cross-section of the innermost and outermost tubes. For
doubly parallel-nearby DWCNTSs with different geometry, it could be easily researched that
all vdW interactional forces could be modeled by linear springs with at least eight constants
(as shown in Fig. Al, each curvy spring has two transverse constants along the y and z di-
rections). In the case of doubly identical DWCNTSs, the number of constants is reduced from
eight to seven. By following this procedure, we should appropriately consider all existing
transverse vdW forces between constitutive tubes appropriately when transverse vibrations
of forests of vertically aligned DWCNTs are of concern. The main made assumptions for
modeling of vdW forces and their variations in the presented continuum-based models are
the linear-like action of these forces (i.e., excluding the higher-order or nonlinear terms) and
their uniform action along the tubes (due to averaging the non-uniform vdW forces and their
variations due to the transverse vibrations). For more accurate modeling of the vdW forces,
these two effects should be suitably taken into account. Thereby, the resulting equations of
motion of the nanosystem would become nonlinear and integro-type and surely some dif-
ficulties arrive into the dynamic analysis of the nanosystem. Herein, without making the
problem so difficult, we are interested in developing linear models for variation of vdW forces
to arrive at a simple model for the vibrations of vertically aligned DWCNTSs arrays as well as
their influential factors. Surely, more complementary studies on this subject by making the

above-mentioned more accurate assumptions lead to new insights on the problem at hand.
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When a carbon atom vibrates, this vibration is induced to its neighboring atoms. The
classical theory of elasticity could not take into account such a bizarre effect in its consti-
tutive equations. To conquer this drawback of this concept, several size-dependent theories
have been developed in the past century. One of the most well-known of these theories is
the nonlocal continuum field theory established by Eringen (1966, 1972, 2002). This so-
phisticated model is not only applicable to elasticity problems but also to any field at the
nanoscale to take into account the nonlocality. From nonlocal elasticity point of view, this
theory basically explains that the state of stresses at a point of a continuum does not only
depend on the stresses at that point but also to those act at its neighbor points. Mathe-
matically, it could be written: of(x,t) = / K(|[x" = x|[; e0a) o};(x',t) dY', where Q is the
spatial domain of the continuum, K is the errnel function, ||x" — x|| denotes the Euclidean
distance between two points of coordinates x and x’/, d€)’ is the infinitesimal portion of

the continuum, o', = o!.(x,t) and cr;‘jl = o"(x,t) in order are the local and the nonlo-

J J ij
cal stress fields, and ega is the small-scale or the nonlocal parameter. The kernel function
has a compact support domain such that / K (||x' — x||; e0a) dQ" = 1, and various kernel
functions for mechanical analysis of one-, t&o-, and three-dimensional domains have been
introduced by Eringen in his book (Eringen 2002). Since lateral vibrations of CNTs of the
nanosystem are of our concern in the present paper, we employ Rayleigh and higher-order
beams for modeling of their vibrations on the basis of the concept of equivalent continuum
structure (ECS) (Batra and Sears 2007; Gupta and Batra 2008; Gupta et al. 2010). For
such one-dimensional elements, the above-mentioned nonlocal constitutive equation could

2 ~nl
also be presented in a simpler form: oY (z,t) — (epa)*——-(z,t) = ol;(x,t). Until now,

ox?

the nonlocality has been incorporated into the governing equations describe vibrations of

nano-scaled rod, beam, plate, and shell structures (Akgoz and Civalek 2017; Barretta et
al. 2016; Civalek et al. 2010; Demir and Civalek 2017a,b; Ghavanloo and Fazelzadeh 2013;
2015; Meng et al. 2018; Mercan and Civalek 2017; Murmu et al. 2012; Numanoglu et al.
2018; Rahmani et al. 2017). Additionally, various mechanical responses of DWCNTs have
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been widely investigated by various researchers. For instance, elastic waves and transverse
vibrations (Heireche et al. 2008; Hoseinzadeh and Khadem 2014; Hu et al. 2008; Wang and
Varadan 2006), nonlinear vibrations (Fang et al. 2013; Ke et al. 2009), vibration signature
analysis for detecting nano-objects (Patel and Joshi 2014), free vibrations in the presence
of magnetic fields (Murmu et al. 2012) and thermal fields (Besseghier et al. 2011; Tounsi
et al. 2013, 2008), forced vibrations (Chang 2013), buckling and postbuckling (Shen and
Zhang 2010; Sudak 2003) of DWCNTSs have been explained by the nonlocal elasticity the-
ory. However, free transverse vibrations of elastically embedded-vertical DWCNTs arrays in
the context of the nonlocal continuum field theory of Eringen have not been examined up
until now.

Concerning mechanical behavior of vertically aligned single-walled carbon nanotubes
(SWCNTs) with membrane morphology, their transverse vibrations (Kiani 2014a) and free
vibration under magnetic field (Kiani 2016) have been addressed. Regarding mechani-
cal analysis of these nanostructures with jungle configuration, their free vibrations (Kiani
2014b), elastic wave analysis (Kiani 2015), elastic waves in the presence of longitudinal mag-
netic field (Kiani 2018a), and magneto-thermo-elastic vibrations (Kiani 2018b; Kiani and
Wang 2018) have been investigated using nonlocal beam models. Recently, transverse vibra-
tions of membranes made from DWCNTSs subjected to longitudinal gradient temperatures
were examined by Kiani and Pakdaman (2018) using nonlocal beam models. In contrast
to the undertaken works on buckling, waves, and vibrations of membranes and jungles of
vertically aligned SWCNTSs, mechanical behaviors of jungles of vertically aligned DWCNTSs
embedded in an elastic matrix have not been comprehensively studied to date.

In the present work, we are eagerly interested in examining free lateral vibrations of jun-
gles of vertically aligned DWCNTs embedded in an elastic matrix. To this end, variation of
the vdW forces between constitutive tubes of the assembly of DWCNTs and its neighboring
one due to the lateral motion of the tubes are visualized by transversely linear springs. In

a deep sight, we confront a nonlocally modeled nanosystem composed of vertically aligned
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tubes that linked each other through a complex net of springs. The constitutive tubes
are modeled by non-localized Rayleigh and higher-order beam models. By employing the
Hamilton’s principle, the linear equations of motion for such a nanosystem are methodically
derived. Actually, these are discrete models since such models and their governing equations
are constructed on the basis of the mechanical behavior of individual tubes. The idea of
developing of continuous models for groups of SWCNTs (Kiani 2014b, 2015, 2018a) is now
generalized for the problem at hand. Then the efficiency of the suggested continuous models
is displayed, and it is declared that the free vibration of highly populated nanosystems could

be efficiently explained by such models.

2. Description of the nanomechanical problem

Consider a forest structure composed of vertically aligned DWCNTs with a uniform
distribution as shown in Fig. 1. The number of layers of DWCNTs along the y and z
axes are represented by N, and N, respectively, while the intertube distance (i.e., the
distance between the major axes of doubly nearby DWCNTS) in both directions is denoted
by d. By considering ECS associated with each tube, transverse vibrations of vertically
aligned DWCNTSs could be mechanically modeled by a double-circular-cylindrical beam-
like structures whose length, wall’s thickness, cross-sectional area, mean radius, Young’s
modulus, shear elastic modulus, and density of the innermost/outermost tubes in order are
lby to, Aby [ Abyy Tmy/Tmys Eby/FEbys Goy /Gry, and py, /pp,. Due to the existence of the vdW
forces between the carbon atoms of the innermost and outermost walls as well as carbon
atoms of doubly adjacent DWCNTSs, the constitutive DWCNTs of the vertically aligned
nanosystem are tightly interacted dynamically. It means that we should be aware regarding
the resulted variation of the vdW forces because of the relative transverse displacements of
nearby DWCNTSs. By assuming a linear relationship between these factors, the coefficient of
vdW forces for the above-mentioned interactional vdW forces should be evaluated by some

effort. The details of calculations of these coefficients (Cy);,;) and Cyp)i,5) where []=[| or L)
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have been given in Appendix A. All exterior nanotubes of the nanosystem are under static
and dynamic interactions with the elastic surrounding medium. Such interactions have
been modeled by continuous transverse and rotational springs with constants K; and K,,
respectively (see Fig. 2). The transverse dynamic displacements of the constitutive tubes of
DWCNTs along the y and z directions in order are denoted by V,,,; and W,,,,; where those
with i=1 and =2 correspond to the innermost and outermost tubes, respectively.

In the following parts, the nonlocal discrete-based and continuous-based models accord-
ing to the nonlocal Rayleigh and higher-order beam theories (NRBT and NHOBT) are
developed for examining free transverse vibrations of elastically embedded layer-by-layer

assembly of vertically aligned DWCNTs.

3. Discrete modeling of jungle-like configuration of vertically aligned DWCNTSs

3.1. Application of the NRBT for frequency analysis

This section displays an energy-based methodology for extracting the explicit-complex
equations of motion of the nanosystem whose constitutive tubes have been modeled on the
basis of the Rayleigh beam theory by consideration of the nonlocality. The main assumption
of this theory is that each plane perpendicular to the neutral axis remains normal after de-
formation. This hypothesis is the same as that of the Euler-Bernoulli beam model; however,
the rotary inertia of the beam is also incorporated into the kinetic energy while such an
important factor is excluded in the Euler-Bernoulli-based beams. In this view, the whole

kinetic energy of the nanosystem is provided by:
OVE N (owE \?
(25 (5
2VE N (PWE N\?
s, <( atgg;”) +( ataw;m) )

In discrete modeling of the nanosystem, each nanotube is modeled separately from its sur-

Ny N

1 b
R e
T (t) ) Z /0 Pb;

=1 m=1n=1

(1)

~.

rounding tubes such that the dynamic-lateral interactions between them due to the vdW

forces could be visualized by elastic layers. The constants of such layers are the slope of
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variation of the transverse vdW forces as a function of relative transverse displacements of
adjacent tubes (for details of calculations of coefficients of vdW forces, please see Appendix
A). As a result, the total strain energy of the elastically embedded jungle-like nanosystem

accounting for the nonlocality, U®(t), on the basis of the NRBT is expressed by:

2 Ny N, l 2 2 R
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where X7 . = \/_ (WE +VE), YR, = \/_( whE .+ Vi), and §;; is the Kronecker delta

mni mni 2

tensor. Using the nonlocal elasticity theory of Eringen (Eringen 1966, 1972), the nonlocal

and (M) are linked to their

bending moments about the y and z axes (i.e., (M )
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corresponding local bending moments by:

82 a2wR
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where I, I}, represents the bending rigidity of the ith nanotube. Let us consider the following

dimensionless quantities:
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4
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In order to derive equations of motion of the jungle-like nanosystem, we employ the Hamil-
ton’s principle. For a nanosystem with N, N, numbers of DWCNTSs, we will arrive at 4N, IV,
dimensionless-partial differential equations of motion to study their lateral vibrations via
the NRBT-based discrete model (see Appendix B).

For frequency analysis of the problem, we use assumed mode approach (AMA). Regarding
lateral conditions of the group, we consider two cases: (i) all the outermost nanotubes on
the edges of the nanosystem are laterally fixed; (ii) only those outermost tubes on the
corners have been fixed. Concerning the ends’ conditions of the constitutive DWCNT's, we
restrict our analysis to the simply supported ends; however, free vibration behavior of the
nanosystem for other boundary conditions could be readily investigated by AMA. Therefore,
the deflection fields of the innermost and the outermost tubes with simple ends are expressed

in terms of admissible mode shapes as follows:

Vil €7) = D Vg () (ing), Wonil€:7) = 3 Wo55(7) sin(5m), (5)
j=1 j=1
where NM denotes the number of vibration modes, me]( 7) and Wmm]( 7) are the time-

dependent parameters pertinent to the jth mode. By application of the Galerkin method

to the governing equations of the elastically embedded group of DWCNTSs (i.e., Egs. (B.1)
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and (B.2)) and using orthogonal property of mode shapes, one can arrive at the follow-

__pd?E?
ing set of second-order ordinary differential equations: M 0 +K'Z" = 0. Let us
T
choose X% = igz exp(iwT), where x& is the dimensionless amplitude vector, i = /—1,

and w is the dimensionless natural frequency. The substitution of this form into the re-
cently derived-discretized equations of motion leads to the following non-trivial solution:
det (—wzﬁR + KR> = 0. By solving this characteristic equation for w, the natural fre-

quencies of the nanosystem could be evaluated.

3.2. Application of the NHOBT for frequency analysis

In this part, we investigate transverse vibrations of elastically embedded jungles of DWC-
NTs using NHOBT. The most privilege of the NHOBT with respect to the NRBT is the
consideration of shear deformation in its formulation. To this end, the longitudinal displace-
ment is considered as a function of the slope of deflection (i.e., v and w*) and the rotation
angle (i.e., @Z)f and ) such that the shear strains at the farthest fibers of the cross-section
of the ECS are vanished. This leads to a third-order function for the longitudinal displace-
ment in terms of the distance from the neutral axis. Therefore, it is anticipated that the
shear effect could be effectively captured and interpreted by the NHOBT.

Using the NHOBT, the kinetic energy of the vertically aligned jungles of DWCNTSs

embedded in an elastic matrix is calculated by:

PVE N (PWH \? owt \’
o, ( 8t8x> +( Dt0 ) Tl | T

OvH  gryH OVH  [(HpH
L2 N N | e, voni - 9 Wi ) Yoy gt X Ymni 4
=13 3% / ot At ot ot de,  (6)
2 b =~ 2117 H owH 2 ouH ’
i=1 m=1n=1 0 Wmm + 12 Zmni + 0421 zmer

otox ot e\ ot

82‘/77]3711 — 21 a\pgnni a\pgnni + 82‘/77?711'

oto Y ot otox

1
where «; = 37 and [, = / pp;2"dA in which r,, is the outermost radius of the ith tube
(o7} Abi

from the DWCNTs, V2 ~and W1

mni mni

in order denote the transverse displacements of the ECS
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associated with the (m,n,i)th tube along the y and z axes, \I’fmm_ and \Ilgn .. represent the
rotation angles of the aforementioned ECS about the y-axis and z-axis, respectively.

In the framework of the linear nonlocal theory of elasticity, the strain energy of the
vertically aligned jungle-like DWCNTs which is embedded in an elastic matrix accounting

for the intertube vdW interactional forces could be written as follows:

nl
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x (1= 81n) (1= S, ) + Ca i s (Xgm. - X{;H)(n_l)(g_i)f (1= 61) (1= Gy, )

K, (VI LK, (wH)? S1m + O & O & O — O1mOin
+( (Vi) (Z"””))Q e O T Y

Kt (W'rlenz) + K (‘IIH _51m6nNz - 61n5mNy - 5nNz6mNy

Ymni

(7)

where (Qp V+o0(Py )P /oxand (Qp )T +a;0(P ) /02 in order are the total resultant

bymnz
shear forces in the (m,n,i)th tube of the DWCNTSs along the y and z axes, (Mg )7
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and (M " represent the nonlocal flexural moments of the (m,n,i)th nanotube of the

DWCNTs about the y-axis and the z-axis, respectively.
In the context of a simplified version of nonlocal elasticity theory of Eringen (Kiani 2015,
2018a), the nonlocal shear forces as well as the flexural moments of the ECS modeled by

the NHOBT could be related to their corresponding local values by:

oPH
b —— bYmni
(ngm +a; y ) €0a <QbHymni + azTZ) = .
H , 2 *wl oPvH . (82)
ki <\Iszm + = >+a I ;m s ( s | T )

opH o2 op gf
<Q££mnz ta #) - (60(1)2 a— (anwm + @ Sas =

; J— o 920 5, o— (8b)
i (‘I’bym T o ) tond g T 922 | 02 |
52MH a a H aQWH
H 2 b mmni mni mni mni
Mbymm - (600‘) axg - J2-; y - ay o2 ) (8C)
aQMH o H H 82VH
H _ 2 bZmni me _ Zm mni 8d
M, — (eoa) 92 2 a;J, ( D D2 ), (8d)

where x; = / Gy, (1 —3a;2%)dA and J,, = / Ey,z"dA. To derive the nonlocal continuum-
Ay Ap

based equations of motion, the Hamilton’s principle is implemented: / (6T (t) — U™ (t)) dt =

0. By taking into account the following dimensionless parameters:

vH an;lnz i H WWI—LInz —=H 1 H —H 1 H ‘]61 t
mni " lb ! mni — lb ? Ymni Ymmni® Zmni Zmmni’ T= l2 IOl
o _dy, —0tds, 5 _oils, o kil o onds, —oids, 5 onls, —ofls,
1 — IZQ 572_1l27’y3_ 2J,’Y4_ 2J 576_1 2 I 2 i
0,12 0l 61 aiJe, 2, — 2001y, + ailg,
2= w1 1o, 1} 2 (Jo, — 201 Ju, + atdg,) Lo, I} 2 (or s, — s, ) Io, 12
7 Igl — 2(11[41 + a%[sla%ng T8 ( — 2041[41 + a%[Gl)a%ng » (121 — 2041[41 + Oé%IGI)Oé%J(;l ’
4
6H _ C’U[o]ijlb —H _ Cd[o]ijlb —H _ Krfollg —H _ Ktl;l
U[.](i,j) a%ng ’ d[.](iwj) CY2J61 ’ " Oé%Jﬁl (121 — 2(11[41 + 04%161), ¢ Oé%JGl ’
oo, o ool —odls, o adle, 5 K2 o 0ndy, —ab,
191 - ) 192 - 2 ) 193 - 2 19 ) 195 - 2 ’
101 a1[41 — allﬁl 161 K1 041J41 — a1J61
15% _ a%JGQ, 92 — I, —2a2ly, + 042162 92 = Jo, — 2ai0dy, + a%JGQ [.] _ ” or L,

2Js," T Iy, — 2010y, +2ls, % Ty, — 200y, + 02T,
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after some manipulations, the dimensionless governing equations that describe lateral vi-
brations of vertically aligned jungles of DWCNTs on the basis of the discrete form of the
NHOBT are obtained as provided in Appendix C.

For frequency analysis of the problem, we discretize the dimensionless deformation fields

of the simply supported nanosystem as follows:

NM

mnz 57 Z anz] Sln jﬂ'E) (103,)
NM —n

T (6 =) W, (1) cos (jmE), (10b)
j=1
NM

Wi (6,7) = > Wi (7) sin (jm€) (10¢)

j=1
NM_

U, (&7) =D W, (r)cos(je). (10d)

j=1
By applying the Galerkin approach to the given equations of motion, namely Eqs. (C.1)-

(C.4), using integration by part technique, and substituting Eqgs. (10a)-(10d) into the re-

—pgd*zf
sulted relation, it is derived: M 2 +K fZH — 0. Now the vector of the dimensionless
T
time-dependent parameter is stated in the following harmonic form: £ = &} exp(iwwr). By

introducing such a form to the obtained set of discretized equations of motion, the natural
frequencies of the vertically aligned jungles of DWCNTs embedded in an elastic matrix ac-

cording to the NHOBT discrete-based model are evaluated from: det (—wQMH + KH> = 0.

4. Continuous modeling of jungle-like configuration of vertically aligned DWC-

NTs

As it is seen for the case of the suggested discrete model based on the NRBT, each
nanotube has its own doubly unknown transverse displacements while in the case of the
proposed discrete model based on the NHOBT, each nanotube has its four individual un-

known deformation fields (i.e., two unknown deflection fields plus to two angle of deflection
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fields). It implies that for a vertically aligned group of nanotubes with N, N, DWCNTs,
we would confront to 4N, N, and 8N, N, unknown fields when it has been modeled on the
basis of the NRBT and the NHOBT, respectively. Therefore, the size of both mass and
stiffness matrices of the discrete-based models would drastically grow by an increase of the
population of the jungle-like nanostructure.

Since each two adjacent tubes could interact statically and dynamically because of the
existing vdW forces, and in view of linear modeling of such distributed forces (i.e., elastic
layers as a fairly rational replacement of such forces), perhaps one could establish the appro-
priate continuous version of the recently developed discrete models in the previous section.
In other words, we are eagerly interested in constructing the governing equations of the
continuous deflections, and then, we would proceed in finding continuous deflections as an

appropriate representation of the discrete deflections.

4.1. Application of the NRBT for frequency analysis

For constructing continuous models, let us to approximate the continuous deformation
fields (i.e., []) in terms of their corresponding deformations of the suggested discrete-based-

models (i.e., [o]) as follows:

[.]mni (.Z', t) ~ []z (:Ca Ymnis Zmni, t) ) [.](mfl)(nfl)i (:Ca t) ~ []z (:Ca Ymni — d; Zmmni — da t) )
[‘](m—l)(n+1)i (:L', t) ~ []z (ZL', Ymni — d7 Zmni + da t) ) [.](m-l-l)(n—l)i ($, t) ~ []1 ($, Ymni + da Zmni — dv t) )

[.](m+1)(n+1)i (l‘, t) ~ []z (:Ca Ymni + d; Zmni + da t) 5

(1)
where (Ymni, Zmni) Tepresents the coordinates of the revolutionary axis of the mnith nanotube
on the plane z=0, []=v!¥ or wl’ and [e]=V! or W where [o]=R or H. In order to
approximate the continuous fields at the neighboring tubes of the (mni)th tube, we use the

Taylor’s series of sixth-order:

1=1 k=0

! U (v o
[]Z (x,ymm:td,zmm:td,t) :ZZ ( L ) a Hz (8;zgzlzlkmnz,t) (:l:d)k (:l:d)lik. (12)
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By introducing Eq. (12) to Egs. (B.1) and (B.2) carefully by virtue of Eq. (11) carefully,

the non-dimensional governing equations that display transverse vibrations of the vertically

aligned jungle-like DWCNTSs embedded in a matrix are derived as given in Appendix D1.
Let us express the dimensionless displacements of the continuous-NRBT-based model in

terms of the vibrational modes of the nanosystem as follows:

Eﬁ (57 7, T) = Z Z ﬁfmpi (T) Qﬁ)ﬁn;m (6) 7, ’7) )
m (13)

I
gl

W (¢, 7, 7) i (T) G (6:10,7) 5

where ¢ . and ¢.¢ . represent the (m,n,p)th mode of the ith tube associated with the

mnpi mnpi

deflections in the y and z directions, respectively, % . (7) and wZ, . (7) denote their corre-

mnpt mnpt
sponding dimensionless time-dependent factors. For a vertically aligned jungle of DWCNT's
whose the outermost tubes at the edges are fixed and the consisting nanotubes have simple

ends, we consider the following mode shapes for dynamic deflections of the nanosystem:

Bu i (E1,7) = i i (€., ) = sin (mm€) sin (n7n) sin (pry) . (14)

Now for free vibration analysis, the Galerkin method is implemented. For this purpose, we
premultiply both sides of Egs. (D.1) and (D.2) by 6% and éw?, respectively, and then the
resulted relations are integrated over the dimensionless spatial domain of the nanosystem.

After successful application of the integration by parts technique, one could arrive at the
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following set of equations:

Cr_R1UIVI  [_R1vIvs  [__plviwi  [_pluiws d*
e e [

V21 - prv2v2 ____pv2wi - pvswa 2R
L R LA 4 R o
R R A R
L A R A R £ B v
i dr® (15)
R R R () [
L I L 3 R A R B O
R R R s (o |
S I i R R R S B

where the elements of the dimensionless mass and stiffness matrices of the nanosystem could
be readily derived as provided in Eqs. (D.4)-(D.13). For frequency analysis of the problem at

hand more specifically, the dimensionless time-dependent parameters in Eq. (15) are stated

R

in the following form: < v/ (7), W/ (1) >=< v{,w{ > exp(iw'r), where =”

; are dimen-

sionless natural frequencies of the nanosystem, and Vé%i and Wé%i denote the dimensionless
amplitude vectors. By substituting the recently harmonic form of the dimensionless time-
dependent parameters into Eq. (15), and solving the eigenvalue equations, the mth natural

frequency of the vertically aligned jungle of DWCNTSs based on the continuous-NRBT model
R wﬁ E b1 1 b1

are calculated from: w,, = —* .
lz Pb: Abl

4.2. Application of the NHOBT for frequency analysis

Let us approximate the continuous angle of deflections of the constitutive nanotubes of

the vertically aligned jungles of DWCNTSs as follows:

G (@, Yoy 2imnin t) 2 UE (@) O (@, Yoy 2omni 1) 2 O (21) (16)
Yi Ymmni i mni

Now by introducing Egs. (11) and (16) to the discrete-based equations of motion of the
nanosystem via NHOBT (i.e., Egs. (C.1)-(C.4)) in view of Eq. (12), the continuous-based
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governing equations that display transverse vibrations of vertically aligned jungles of DWC-
NTs using NHOBT would be derived as given in Appendix E.1 (see Egs. (E.1)-(E.4)).
By discretizing the continuous-based deformation fields of the ith tubes of the vertically

aligned jungle of DWCNTs as a function of admissible mode shapes in the following form:

(& mny,T) Z

mnpz ) ¢vmnpi (57 , 7) ’

zuM

m=1n=1p
WLU Nn pw
(5 7T Z mnp mnpi (577757)7
m=1 n=1 p=1
N, yany Np Yy H (17)
P
1/} g T Z Z Ymnpi ¢mynpz (§ 7 );
m=1 n=1 p=1
Ny, Noy, Npy,
H
e (&, T e () Bl (€,1,7)
m=1 n=1 p=1
here 7/ !l o d o the time-dependent |
where Uy, (T), Wi ()5 ¥y, (7), and ¢, (1) are the time-dependent parameters,

and ¢y, Ponnpis qunpz, and ¢mnpz represent the appropriate (m,n,p)th vibration modes
pertinent to the boundary conditions of the nonlocal-continuous-based nanosystem. For a
vertically aligned forest of DWCNTs with simply supported ends whose the outermost tubes

of the exterior DWCNTs have been fixed, we consider the following admissible modes:

(bfnnpi (57 UB F)I) = (b’ru;anz (775 e 7_) = sin (mﬁg) sin (”7”7) sin (pﬂ-V) ) (18)

¢f§’nm (&10,7) = Ghrpi (0,7, 7) = cos (ma) sin (nmn) sin (pry) .
In order to arrive at the appropriate ordinary differential equations, we premultiply both
sides of Egs. (E.1)-(E.4) by 6o, swZ, 51/1 and 51/1 ., respectively, and then, the resulted

Z;?

relations are integrated over the dimensionless spatial domain of the nanosystem. By using
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the integration by parts technique, it is obtainable:

—H
—[Mf}wzlwzl {Mﬂw P [Mﬂwzl [Mf}w [_ﬂwzlwyl [_ﬂwzlwyz— %
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[Mf} Yapthzy {Mﬂw () [Mﬂw 51 [Mﬂw {_f} Vagthyy [_f} Yzy%ys %
a’wi
] ]| |
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(19)
where the dimensionless mass and stiffness matrices of the continuous-NHOBT-based model
for free vibration analysis of vertically aligned jungles of DWCNTSs have been given in Ap-

pendix E.2. By taking into account the deformation field as follows: < ¥ (1), w (1), @Z(T), WH(T) >

Yi
—H —H . . .
=< Vg , Wg W0 Wy, > exp(le 7), where @’ denote the dimensionless natural frequen-
. g —yg =H —H )
cies of the nanosystem based on the NHOBT, and Vé{ , W(I]{ , o, and W o are the amplitudes

of the nanosystem. Finally, by following up the given procedure in section 2.2, the natural

H
Q@ [ J;
frequencies of the nanosystem could be readily evaluated by: w!! = ll? 1—61.
b 01
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5. Results and discussion

In this section, a roughly comprehensive parametric study is presented to examine free
transverse vibrations of vertically aligned DWCNTs with forest configuration. Using sug-
gested discrete and continuous models, geometric effects, the nonlocal parameter, and the
lateral stiffness of the matrix on the fundamental frequency of the nanosystem are inves-
tigated. The mechanical and geometry data of the constitutive DWCNTs are considered
to be: #,=0.34 nm, r,,=1 nm, ega=2 nm, p,=2300 kg/m3, and E,=1000 GPa. For all
provided parametric studies, the outermost tubes of the exterior DWCNTs have been fixed

unless explicitly referred to.

5.1. Natural frequencies of the nanosystem for two boundary conditions

In Table 1, the results of the discrete models for a group of DWCNTSs based on the
NRBT and the NHOBT are presented for two different boundary conditions. In the first
boundary condition, denoted by BC1, all the exterior DWCNTs have been fixed while in
the case of the second boundary condition-represented by BC2-only those DWCNTSs at the
corners are fixed. For six slenderness ratios as well as three small-scale parameters, the
predicted fundamental frequencies of the nanosystem under the above-mentioned conditions
for the case of N,=N,=20 are given in Table 1. A brief comparison of the results of these
two boundary conditions shows that in all proposed nonlocal models, the natural frequencies
of the BC1 are greater than those of the BC2. This issue is more obvious for nanosystems
with higher slender nanotubes. Since the lateral constrains of the nanosystem with BC1 are
higher than that with BC2, the above-mentioned conclusion is rational. A more detailed
investigation of the results of both boundary conditions indicates that an increase in the
slenderness ratio would result in a decrease of the fundamental frequencies. The rate of
reduction is more apparent for lower values of the slenderness ratio. Additionally, an in-
crease of the nonlocal parameter yields decreasing of the fundamental frequencies via both
theories. Another important point is the moderate increase of the fundamental frequency
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at slenderness ratios higher than 100 due to the strong increase in the tightly interactional
vdW forces between the different walls, particularly those of the internal and external walls
of consisting DWCNTs.

It should be noted that the small-scale factor for a DWCNTs with given geometry and
boundary conditions has a constant value; however, herein we explore the role of the small-
scale factor in the frequencies of the nanosystem for two reasons: (i) to examine the difference
between the classical models’ results and those of the novel nonlocal models, (ii) to reveal

the influence of the nonlocality on the trends of the natural frequencies’ plots.

5.2. Natural frequencies based on the discrete and continuous models

In Table 2, the results of discrete and continuous models in the case of fixed exterior
DWCNTSs have been provided for three slenderness ratios (i.e., \y=14, 24, and 34) as well as
five levels of the population of the nanosystem (i.e., N,=N,=4, 8, 12, 16, and 20). A close
survey of the predicted results by the continuous models with those of the discrete models
demonstrates that the continuous model could successfully capture the results of the discrete
models for various values of the slenderness ratio and the populations. The importance of
the continuous models in predicting free vibrational behavior of the nanosystem becomes
apparent for nanosystems with a large number of DWCNTs. For such a case, application of
the discrete models would compromise with a high computational effort. More scrutiny of
the obtained results reveals that an increase of the number of DWCNTSs would result in a
reduction of the fundamental frequency. Such a decrease is more obvious for a nanosystem
with a higher slenderness ratio. Furthermore, the rate of reduction of fundamental frequen-
cies as a function of the slenderness ratio is more obvious for nanosystems with a higher
number of DWCNTSs. A detailed comparison of the results of the NRBT and those of the
NHOBT displays that the predicted results by the continuous models are in a fairly good
agreement with those of the discrete models. Regarding the shear deformation effect, the

presented results in Table 2 show that the results of the NRBT and those of the NHOBT
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are generally close to each other, particularly for nanosystems with high levels of the slen-
derness ratio. In most of the cases, the predicted results by the NHOBT are lower than
those of the NRBT and their relative discrepancies would commonly increase by reducing

the slenderness ratio of the nanosystem.

5.3. Influence of the matrix’s stiffness on frequencies

The surrounding medium of the nanosystem was modeled by continuous lateral and
rotational springs that have been attached to the outermost tubes of the exterior DWCNTs.
The constants of these springs could be readily evaluated by considering the geometry and
mechanical properties of such an elastic medium as well as their lateral interactional of atoms
of the exterior DWCNTs with the neighboring atoms of the elastic medium. However, it is
anticipated that the later interaction would not contribute into the constant of the continuous
rotational springs. Since the main focus of the authors in the present work is on the free
transverse vibrations of vertically aligned groups of DWCNTSs, more details on evaluation
of the above-mentioned constants of springs have not been provided.

In Fig. 3, the fundamental frequencies of the elastically embedded of the nanosystems
of various populations as a function of the lateral stiffness and rotational stiffness of the
surrounding elastic medium are demonstrated. The plotted results have been extracted
from the developed continuous models based on the NRBT and the NHOBT for three levels
of the population of nanosystem (i.e., N,=N,=5, 8, and 15). Based on the proposed nonlocal
continuous models, an increase of the elastic medium parameters (i.e., rotational stiffness or
transverse stiffness) leads to increasing of the fundamental frequency of the nanosystem. The
increase of the fundamental frequency of the nanosystem due to stiffening of the surrounding
medium is more apparent for those nanosystems with lower numbers of DWCNTs. For a
given transverse stiffness or rotational stiffness of the surrounding medium, by increasing the
population of the nanosystem, the fundamental frequency would reduce. Such a trend will

be discussed in the next part with a more detail. Further studies indicate that the rate of the

21



increase of the fundamental frequency of the nanosystem in terms of the rotational stiffness
for low values of such a parameter is very high in compare to the case of very stiff surrounding
elastic medium. This issue becomes more apparent for lowly populated nanosystems. For
instance, in the case of N,=N_,=5, by increasing the dimensionless rotational stiffness from
500 to 700, the variation of the fundamental frequency as a function of rotational stiffness
would be obviously reduced. For Ff > 1000, variation of the rotation stiffness has a trivial
influence on the variation of the fundamental frequency. For all considered levels of the
transverse and rotational stiffness of the surrounding elastic medium, the graphical results
demonstrate that the results of the NHOBT are lower than the results of the NRBT. In
addition, the relative differences between the results of these two nonlocal models would

lessen as the nanosystem’s population grows.

5.4. Influence of the number of DWCNTs on frequencies

Figure 4 shows the variation of the fundamental frequency in terms of the number of
DWCNTs for two distinct boundary conditions as well as three slenderness ratios. The
results of Figs. 4(a) and (b) in order are corresponding to the nanosystems whose the out-
ermost tubes of all the exterior tubes and the four cornered DWCNTSs have been fully
prevented from any transverse motion. By increasing the number of DWCNTSs, the fun-
damental frequencies of the nanosystem for both boundary conditions would decrease. In
other words, with the increase of the number of DWCNTSs, the nanosystem dimensions in
y and z directions would increase, which reduces the lateral stiffness of the nanosystem.
A closer examination of the obtained results shows that increasing the slenderness ratio
not only reduces the fundamental frequencies but also increases the rate of variation of the
fundamental frequency in terms of the number of DWCNTSs. Also, the increase in the slen-
derness ratio makes the results of the two nonlocal theories become closer to each other, so
that in the case of \;=32, the plotted results are almost overlapping. This means that the

effect of the shear deformation becomes negligible for nanosystems whose slenderness ratios
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of the constitutive nanotubes are high enough. According to the results of two proposed
models, the results of the continuous-based NHOBT, especially for lower slenderness ratios,
are lower than those of the continuous-based NRBT. It means that the transverse stiffness of
stocky nanosystems based on the NRBT is usually overestimated due to not consideration
of the shear effect in its formulations. A comparison study of the demonstrated results in
Figs. 4(a) and (b) reveals that the fundamental frequencies of the nanosystem with BC1 are
commonly greater than those of the nanosystem with BC2. In addition, the rate of variation
of the frequency as a function of the number of DWCNTSs in the case of BC1 is greater than
that for the case of BC2.

5.5. Influence of the slenderness ratio on frequencies

Figure 5 shows the variation of the fundamental frequency in terms of the slenderness
ratio for different numbers of DWCNTs. For nanosystems with a low number of DWCN'Ts,
the plots consist of two obvious branches: the descending branch and the ascending branch.
In the first branch, the reduction rate of fundamental frequency is notable such that the
plots take their relative minimum points at the end of the branch. Thereafter, the ascending
branch is started, and the fundamental frequencies would increase with a fairly mild slope.
Such an odd behavior is attributed to a combination of the decreasing effect of the slenderness
ration and the increasing effect of the coefficients of vdW forces. Actually, in the descending
branch, the role of decreasing effect of the slenderness ratio in the transverse stiffness of
the nanosystem is more obvious with respect to the increasing effect of the coefficients of
vdW forces. However, in the second branch, the increasing of the transverse stiffness is
mainly dedicated to the increasing of the vdW forces’ coefficients. It should be noted that
the location of the aforementioned extremum points essentially depends on the population
of the nanosystem. For example, a nanosystem with a higher population has a minimum
point with a higher slenderness ratio. In the descending branch, the transverse stiffness

of the nanosystem would reduce by increasing the slenderness ratio. The predicted rate
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of reduction by the NRBT is fairly greater than that by the NHOBT. As it is seen, by
increasing the slenderness ratio, the results of the NHOBT become closer to those of the
NRBT and the role of shear deformation on the free transverse vibration of the vertically
aligned groups of DWCNTs would decrease. For instance, for nanosystems with A\;=10 and
100 in the case of N,=N,=500, the NRBT could overestimate the results of the NHOBT

with relative error lower than 17 and 0.5 percent, respectively.

5.6. Influence of the intertube distance of DWCNTs on frequencies

The dependency of the transverse frequency of the nanosystem to the intertube distance
is one of the major factors that could be paid attention to in their structural mechanics
design. In Fig. 6, the plots of the fundamental frequency as a function of the normalized
intertube distance have been provided for three levels of the population of the nanosystem
(i.e., Ny,=N,=b, 8, and 28). The demonstrated results indicate that with the increase in the
distance between the nanotubes, the fundamental frequency initially decreases sharply. For
example, in a group of DWCNTSs with N,=N.=5, the fundamental frequency would reduce
from 1.1 THz to 0.15 THz (minimum value), and in a group with N,=N,=8, the reduction
of fundamental frequency from 0.85 THz to 0.5 THz(minimum value) is observed. These
changes reflect further influence of the intertube distance on the results of the low-population
nanosystems. By increasing the intertube distance, contrary to the previous branch of the
frequency variation, the incremental process is followed by the normalized distance of 4
and then remains almost constant. That means for dy > 4, transverse vibrations of each
DWCNTs are independent from its neighboring ones. The reason for such a mechanical
behavior of the nanosystem is chiefly attributed to the variation of the coefficients of vdW
forces, which initially decreases to a certain distance, and then, it will take an ascending
trend. A close comparison of the obtained results shows that the relative difference between
the proposed models reaches its maximum value when the frequency of the nanosystem is the

minimum. This issue is more apparent for nanosystems with lower numbers of DWCNTs.
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For example, in the case of N,=N,=5, the NRBT could predict the results of the NHOBT
with the relative error lower about 44% while in the case of N,=N,=28, the aforementioned

relative error reaches 5%.

6. Concluding remarks

Due to the importance of vibration of clusters made from carbon nanotubes, herein,
free vibrations of elastically confined forests of vertically aligned DWCNTs with three-
dimensional configuration were investigated using nonlocal beam models. The crucially
obtained results of this research are as follows:

1. The vibrating frequency of the nanosystem when all the exterior DWCNTs have been
restrained is more than that of the case whose cornered nanotubes have been restrained.
Such a fact is much less pronounced in nanosystems with a high slenderness ratio. Also, with
the increase in the number of DWCNTS, the difference between the fundamental frequencies
in these two boundary conditions decreases.

2. The fundamental frequency of the nanosystem decreases with the increase of the
small-scale factor. The effect of this parameter on vibrational behavior of nanosystems with
a lower slenderness ratio is greater. In general, the reduction of the fundamental frequency
is attributed to the reduction of the lateral stiffness to the mass ratio.

3. The increase in the slenderness ratio initially leads to the reduction of the fundamental
frequency, but in high slender nanosystems, it yields growing of the fundamental frequency,
which is more pronounced for nanosystems with a low population. Furthermore, as the
slenderness ratio becomes greater than 30, the shear deformation of the higher-order beam-
based model would reduce; as a result, the results of the two suggested models approach
each other.

4. With increasing the number of DWCNTs, the fundamental frequency decreases. This
reduction for nanosystems whose all the exterior tubes are tied represents a higher rate than

the case when only the cornered nanotubes are kept fixed.
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5. Using continuous models, it is easy to analyze the free vibrations of nanosystems
with an arbitrary number of DWCNTSs, although discrete models require high computational
efforts.

6. With increasing the rigidity of the surrounding elastic matrix (i.e., increasing the
rotational and transverse stiffness of the attached springs), the fundamental frequencies
increase. In addition, the relative difference in the results of the NRBT with the results of
the NHOBT increases with the growing the rotational stiffness of the adjacent environment.
The increase in the population of DWCNTs also leads to a decrease in the rate of change of
the fundamental frequency with respect to the increase in the adjacent environment stiffness.

7. An increasing the intertube distance of the DWCNTs initially leads to reduce the
fundamental frequency of the nanosystem. Similarly, with an increasing distance, the use
of a nanosystem with a lower population causes a further decrease of the frequency. As the
distance increases further, the frequency increases up to a certain distance, and at greater
intertube distances, the frequency change becomes very low and fairly remains constant.

The suggested nonlocal models in this work could be appropriately extended to vibra-
tional analysis of layer-by-layer assembly of vertically aligned multi-walled carbon nanotubes
(MWCNTs) with some effort. Additionally, by realizing the dynamical interactional effects
of doubly orthogonal DWCNTs, this work would be regarded as a good basis for examining
vibrations of orthogonal layers consist of vertically aligned DWCNTs or even MWCNTs.
The work on these scientific gaps should be paid attention to by investigators who are ex-
ploring the mechanical behaviors of ensembles of CNTs. Surely, by increasing our knowledge
on various mechanical aspects of such tiny nanosystems (i.e., their statics, buckling, post-
buckling, flexural and shear effects), we could then proceed in their optimal design under

externally applied loads.
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Appendix A. Introducing the coefficients of the vdW forces

Using Lennard-Jones potential function, the coefficients of the vdW forces between con-
stitutive elastically deformable tubes of the doubly parallel DWCNTSs system shown in

Fig. A1 are calculated as follows:

.
. /lb /lb /27r /277 T'm; €08 (i) )
s 9ally T, €OS () — ’ (A'l)
_a x48x5( M y )
,

2

m; €08 (0:)

xdtpjdgoidxjdxi,

—256e T, [ [T [T 2T 1 >
S el AV AV A o i)~ (A2

% |x SX° | rm sin (;)
+d(1 — 052 — d;3)
Xd(pjdgﬁidlﬂjd$i,
where
2
X($j7xi7goja@i;rmj7rmwd) = (‘rj _‘rl)2+ (ij COS(SDj) — T'm,; COS ((107,)) + (A 3)

(rm, sin (97) = 7, sin (27) + d(1 = 02 — b))
in which (j,4) = (3,1),(3,2),(4,1),(4,2),(2,1),(4,3), 0 < s, 2; < I, 0 < ¢y, 0; < 2m,
Cdl(m = Cvl(m (\/ﬁd, lb,ij,rmi>, Cdll(j,i) = CUH(M) (\/§d, lb,rmj,rmi>, T, and rp, are the
mean radii of the constitutive tubes of DWCNTs, a is the length of the C-C bond, € is the

potential well’s depth, and ¢ is the distance corresponds to the zero potential function.
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Appendix B. Nonlocal equations of motion on the basis of the discrete-based-

NRBT

—R
N S VA 92V e 0229 _R —R —R
2¢—2 mni = 21—2 mni mnz
0 —Je T2 {Ql o712 - )\% 87—2852 + CU||(i+2,i) [(Vm’m - V(erl)m) (1 B 5mNy) +
—R —R —R =R —R —R
(ani - V(m l)nz) (1 o 51m):| + C’U”( 3-4) (anz - an(3—i)) + Cv||(1+1 4-1) |:(an1 o V(m+1)n(3—i))

(1 - 5mNy) + (VfINl - V(m 1)n(3— z)) ( o 51m):| + C'UL( i+2,4) [(Vfwn - V::(n—l)z) (1 - 51”)
+ (mem‘ - me(nJrl)i) (1 —dnn )} + CUJ_(Z s (mei - me(sfi)) + CUJ_(HI . ) [(mei - sz(nfl)(Bfi))
R —R —R =R

—R R —R —R
X (1 — 61n) (1 — 61m) + 0.5Cd”(i’37i) (W’mnl + V Wmn(?)—i) — V’mn(3—i)) + O'E)Cd\\(i+1,4—i)

—R —R
(Wmm + Vi — Wim-1)(n—1)3-1) — V(m—l)(n—l)(3—i)) (1 =61m) (1 = 010) +0.5Cy) .,
—R —R —R
mnz + anz W(erl)(nJrl)i - V(m+1)(n+1)i) (1 - 571Nz) (1 - 5mNy) + 0'5Cd”(i+1y4,i)

X
—R —R —R
( mni = Wity ma1)(3-1) — V(m+1><n+1><37i>> (1= 0nn.) (1= 0mn,) +0.5Cy,,,

—R — —R
X (1 - 6171) + (anz - Vm(n+1)(37i)) (1 — OnN )i| + 0‘50d||(i+27i) (Wmnz + anz - W(mfl)(nfl)i - V(mfl)(nfl)i
(

—R —R —R _R
Vini — = Vimtnm-1)i + W(m+1)(n—1)i) (1= 61) (1 = b, ) +0.5Cy,,

R ——R —R ——R —R —R ——R —R
(anz - Wmnz - an(?:—i) + Wmn(?:—z)) + 0'5Cd“(i+1,4,i) (anz - Wmni o V(m+1)(n—1)(3—i)+

—R —R —R —R —R —R
W(m+1)(n71)(37i)) (1= 610) (1 = dmn,) +0.5Cy ., (me- ~Womi = Vim—1)(n+1)i T W(mfl)(nJrl)i)

R R

)

—R —N —R R
(1 =6nn.) (1= 61m) + 0'5Cd”( 1 (me' ~Wini = Vim-D(m+1)3-0) T W(m71)(n+1)(37i)) (1 =6nn.) (1= d1m)

—R =R =R —R
+0'5CdJ_(i+27i) (anz - Wmnz + W(m 1)(n—1)i — V(mfl)(nfl)i) (1 - 6171) (1 - 517") + O'SCdL(iws,i)

X (mei - mez + Wmn(?)—i) - me(3—i)) + 0-5€§L(i+1,4,i) (mez - mei + W?m—l)(n—l)@—i)_
Vgn—l)(n—l)(?)—i)) (1 —615) (1 = 01m) + 0-562(#2@) (mei - mei + Wﬁn-ﬁ-l)(ﬂ—i—l)i - Vﬁn-‘,—l)(”-ﬁ-l)i)

% (1= 8uy.) (1= 8mn,) +0.5C50 (ij‘;m i W 1) (g 1) 5ty — V@H)(Wxg,i))

< (1= 0nn.) (1= 6m,) + 0.5621(”2,” (me Wi = Voo sy — W )(nﬂ)i) (1= 6un.) (1 — G1m)
+05C41 (me + Wi = Vouna—t) — Woon(s— l)) 10500, e (me T = Vo ) (5t)—
me—l)(n-‘rl)(s—i)) (1- 5nNz) (1= 01m) + 0'5CdL(i+2’i) (Vfwn + W V(m+1)(n—1)i - Wﬁn-ﬁ-l)(n—l)i)

—R —R —R —R —R
X (1= 01n) (1= 6mn,) +05Cq1 .\, (me- + Wi — V(m+1)(n71)(37i) - W(erl)(nfl)(Bfi)) (1—dum) (1

(1 —=141;) p =0,

S 819 + O1m + Onn. + Om
(K Vi — K2 avgm) T e
_61m61n - 51m5nNz - 61n6mNy - 6nNZ 6mNy

(B.1)

28

- 5mNy)



0T oTWh 202 9ATy R —nr
2¢—2 mnz 2¢—2 mni mnz
03 354 +E o1 o2 )\2 012082 + C'”H(HZ i) [(Wmm o Wm(n+1)i) (1—=6nn.)

R ——R R ——R ——R R
+ (Wmnz - Wm(n—l)z) (1 - 51n>:| + CUH( 3-4) (Wmnz - Wmn(?:—z)) + CUH(1+1 4-4) |:(Wmnz - Wm(n—i—l)(?:—i))

(1 —dnn.) + (mez - Wi(n 1)(3— i)) (1- 51n)} + CUL(1+2 iy [(Wi i W(m 1)ni) (1= d1m)

+ (mez - WﬁnJrl)ni) (1—0m )} + CUJ_(I 3_4) (mez - me(s i)) + CUJ_UH i) [(mez - Wg;mfl)n(Sfi))

X (1= 0um) + (Wf%m ~ W frattyna- i)) (1= 0m )} +0.5Cy) . (Wmm +V i = W) s —Vﬁn,”(n,m)
x (1= 610) (1 = 01m) + 0.565”( - (Wffm + Vi — Wonn(s—iy — V,ﬁn@_i))

050 1y a (Wmm + Vi — W(m—l)(n—n(s—i) - me—l)(n—l)@—i)) (1 =d1m) (1 = d1n)

+0.5C 4y (Wi + Vi = W o) astys = V) gy ) (1= 0. (1 = dmn,)

+0'5€5Hu+1,44> (Wmm + Vi — meJrl)(nJrl)(Bfi) - meJrl)(nJrl ) (1—6nn.) (1 — dmn, )

+0-5€5|\(i+2,i) (wam - me' - W?’m 1)(n+1)i +V§n 1)("+1)i) (L —01m) (1= dnn.)

+0.5Ca0 0y (Wi = Vouni = Wonna—) + Vonas— ) + 05C a0, 1 (WR Vot = W oyt 1y 3y +

—R —R —R —R —R
V(m71)(n+1)(37i)) (1= 61m) (1 = bnn.) + 0-5Cd||u+2 Y (Wmni Vi = Wiminm-1)i + V(m+1)(n71)i) (1= 6mn,)

—R —R —R —R
X (1= 61n) +0.5Cq) 1y 4y (Wmni Vi = Wiy m-1@—i) + V(m+1)(n 13— z)) (1—=0mn,) (1 —61n)

+05C,1 (me Vi = W 5y metyi + Vo 1)(,1,1)1.) (1= 610) (1= 61) +0.5C5,

X (ann - mei - me(?)—i) + ann(?)—i)) + 0-5au(i+1,4,i) (Wfrm - mei - me—l)(n—l)@—i)
+V§n—1)(n—1)(3—i)) (1= 61m) (1 = d1n) + 0-562(#2@) (mez - mei - Wﬁn-ﬁ-l)(n—i—l)i + Vﬁn-‘,—l)(”-ﬁ-l)i)

X (1= 6nn.) (1= 6mn,) +0. 565J_(1+1 iy (mez - mei - W&Jrl)(nJrl)(Bfi) + Vﬁmﬂ)(nﬂ)(&i)) (1= 0nn.)
X (1=0mn,) + 0-56511( g \ ) (W'r]:nz + V - Wgn—l)(nﬂ)i - V?m—l)(nﬂ)i) (1= 01m) (1 = dnn.)
+0-565i<i,3,i) (Wmm + 7R me(g_i) - fom(g_i)) + 0.5651( . (Wmm N Al me_l)(nﬂ)(g_i)_
Vé;—1)(n+1)(3—i)) (1= d1m) (1 —0nn.) + 0-56§L<i+2,i) (Wm’m + Vi — W(m+1)(n—1)i - V?’m-ﬁ-l)(n—l)i)

—R —R —R —R
X (1= 8mn,) (1= 61n) + 0.5Ca1 i1as (Wmni +Vinni — W(m+1)(n71)(37i) - V(erl)(nfl)(Bfi))

R _ROPWE S1n + O1m + O, + Omn, — O1mO1n—
% (1= 6, ) (1= 01) + <K5mei _ Kf%) 1 1 N. N, — 01mO1 16 —o,
61m5nNz - 51n6mNy - 6nNZ 5mNy
; (B.2)
— 0 []
where Z[.] =[] — u2 =2,
=115

29



Appendix C. Nonlocal equations of motion on the basis of the discrete-based-
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Appendix D. Formulations of the continuous model based on the NRBT

Appendiz D.1. Nonlocal governing equations
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where
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Appendiz D.2. Nonlocal mass and stiffness matrices

The non-dimensional mass and stiffness matrices associated with the vertically aligned
jungles of DWCNTSs surrounded by an elastic matrix which is modeled by the continuous-

based-NRBT are provided by:
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Appendix E. Formulations of the continuous model based on the NHOBT

Appendiz E.1. Nonlocal governing equations
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Appendiz E.2. Nonlocal mass and stiffness matrices

On the basis of the continuous-based-NHOBT, the non-dimensional mass and stiffness

matrices of the vertically aligned jungles of DWCNTs embedded within an elastic matrix

are obtained as:
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Captions of the Tables:

Table 1. The predicted fundamental frequencies (THz) of the nanosystem with BC1
and BC2 for different slenderness ratios as well as small-scale parameters (N,=N,=20).

Table 2. The predicted fundamental frequencies (THz) of the nanosystem by both
discrete models and continuous models for different numbers of DWCNTs and slenderness

ratios.
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Captions of the figures:
Fig. 1. A layer-by-layer assembly of vertically aligned DWCNTs.

Fig. 2. An illustration of the continuum-based jungle of vertically aligned DWCNTs

embedded in an elastic matrix.

Fig. 3. Influence of the elastic properties of the matrix on the fundamental frequency for
different numbers of DWCNTs: ((...) NRBT, (—) NHOBT; (o) N,=N.=5, () N,=N,=8,
(A) Ny=N,=15, \=17).

Fig. 4. Influence of the number of DWCNTs on the fundamental frequency for vari-
ous slenderness ratios for two cases: (a) all exterior DWCNTSs are fixed, (b) all cornered

DWCNTs are fixed; ((...) NRBT, (—) NHOBT; (o) \;=12, (OJ) A\=22, (A) \=32).

Fig. 5. Influence of the slenderness ratio on the fundamental frequency for differ-
ent numbers of DWCNTs: ((...) NRBT, (—) NHOBT; (o) N,=N,=5, () N,=N,=15,
(A) Ny=N,=500).

Fig. 6. Influence of the intertube distance on the fundamental frequency for differ-
ent numbers of DWCNTs: ((...) NRBT, (—) NHOBT; (o) N,=N,=5, (O0) N,=N,=8,
d — 27y, )

(A) Ny=N,=28, \y=22, dn = ;
b
Fig. A1l. Schematic representation of a doubly adjacent DWCNTs accounting for linear

modeling of the variation of vdW forces due to their lateral vibrations.
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Table 1.

A1
eoa (nm) 10 15 20 100 250 500
BC1
NRBT 0 3.227616 1.497925 0.869338 0.319643 0.517675 0.733319
1 2.957756 1.438934 0.850265 0.319643 0.517675 0.733319
2 2.431720 1.297280 0.800243 0.319643 0.517675 0.733319
NHOBT 0 2767708 1.379718 0.828275 0.319636 0.517675 0.733319
1 2.536513 1.325567 0.810211 0.319636 0.517675 0.733319
2 2.086087 1.195575 0.762849 0.319636 0.517675 0.733319
BC2
NRBT 0 3.226638 1.495641 0.865285 0.289690 0.468558 0.663737
1 2.956687 1.436555 0.846119 0.289690 0.468558 0.663737
2 2430416 1.294640 0.795837 0.289690 0.468558 0.663737
NHOBT 0 2.766487 1.377191 0.823990 0.289683 0.468558 0.663737
1 2.535179 1.322936 0.805830 0.280683 0.468558 0.663737
2 2.084462 1.192657 0.758194 0.289683 0.468558 0.663737




A1 4 8 12 16 20

DMst

NRBT 14 1.856185 1.530893 1.477310 1.459810 1.452037
24 1.322751 0.770947 0.652175 0.609453  0.589659
34 1.243575 0.610682 0.448592  0.382733  0.349820

NHOBT 14 1.767080 1.412661 1.353022 1.333443  1.324729
24 1.316200 0.757205 0.635421 0.591335 0.570842
34 1.242809 0.608348 0.445237 0.378729  0.345404

CMst

NRBT 14 1.854956 1.530588 1.477135 1.459677 1.451922
24 1.321878 0.770652 0.652031 0.609369  0.589604
34 1.242765 0.610321 0.448388 0.3826035 0.349731

NHOBT 14 1.765888 1.412392 1.352884 1.3333467 1.324651
24 1.315323 0.756905 0.635274 0.5912495 0.570786

34 1.241997 0.607985 0.445032 0.3785986 0.345314
T and I: DMs and CMs in order stand for discrete models and continuous models.
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Highlights of the present resear ch:

* Nonlocal-bilateral dynamics of layer-by-layer assembly of DWCNTSs are studied.

» The Rayleigh and higher-order beams are adopted for modeling of constitutive tubes.
» The complex rigorous-intertube vdW forces are taken into account for the models.

* Rolesof intertube distance, shear, and population on vibrations are displayed.

* Novel-nonlocal-continuous-based models are al so established and verified.
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